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We present numerical results for backscattering of electromagnetic waves by fractal
aggregates of fractal dimension < 2. Single-scattering analytical result shows that
Fourier transform of the density-density mass correlation function of the scatterer
is the main contribution of the backscattering cross-section wavelength variation,
when wavelength is in the fractal range of the scattering object. This allows to
conjecture that multispectral backscattering analysis could be used to measure the
geometrical fractal dimension of the scatterer. Illustrative results are given by
using several recently proposed numerical scattering codes accounting for multi-
ple scattering. Applications to lidar experiments in the visible range are briefly
discussed.

1 Fractal Aggregates

Aerosol particles commonly consist of disordered clusters of nanometer-size grains.
To give a few examples, these are soot particles from diesel engines 1, smoke obscu-
rants 2 or haze particles in planetary atmospheres 3. They correspond to a variety
of standard two-step coalescence scenario : in a first regime, high-temperature
nucleation creates compact small grains, then low-temperature aggregation forms
disordered large clusters in which the grains, previously created, keep their incdivid-
uality. Only the local junctions between neighbouring grains can be structurally
modified by local melting, forming necks. These small local transformations will be
neglected in the following, and all the grains will be considered as identical homo-
geneous spheres. All what will be written below for large fractal aerosol 4 clusters
can be translated to disordered fractal colloidal aggregates as well, although the
dispersing fluid medium is different, but the cluster structures are basically the
same 5.

In dense atmosphere, two aggregation models are relevant 6 the irreversible
Brownian Cluster-Cluster Aggregation model (BrCCA) and the Reaction-limited
Cluster-Cluster Aggregation model (RCCA). The first one (BrCCA) corresponds
to the experimental conditions where sticking between grains is so strong that
aggregation is irreversible and rapid 7 : sticking is permanent once formed. On the
other hand, the latter model (RCCA) is the case where sticking is so weak that only
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Figure 1. Fractal clusters of 512 identical particles generated respectively with the Brownian CCA
model (Df = 1.75), and with the Reaction-limited CCA model (Df = 2)

the strongest structures are permanently formed s . In this slow aggregation, the
clusters are more compact than for the BrCCA case. Both models lead to fractal
structures, and the fractal dimensions are, respectively, Df = 1.75 (for BrCCA)
and Df = 2 (for RCCA). Fig. 1 gives typical pictures of 3-dimensional clusters
numerically built with such models.

Optical response of such structures carries informations about the fractal cor-
relations. The most widely known is the so-called q-DJ-law 9 valid for small-angle
neutron- or X-scattering. This gives direct access to the fractal dimension of the
clusters ". This law is derived in the case where scattering is so weak that multi-
ple scattering can be neglected. It should be corrected when multiple scattering is
expected to play some role - as when the refractive index is significantly different
from 1, and fractal dimension larger than 2 -. Note that the value Df = 2 is the
expected threshold, some logarithmic corrections may arise in this case.

Properties of the scattering pattern of electromagnetic wave by such aggregate
are the direct consequence of interferences between waves with different phases due
to the spatial distribution of the grains. This distribution can be characterized
by the distance-distribution function representing the density-density correlation
function in the case of aggregates of N identical spheres 11:(1

(= N(N - 1) ,0

where the summation runs over all pairs of distinct grains. The 6 is the Dirac-
distribution, and average is here over a large set of independent clusters of the
same fractal dimension and the same number N of grains. This function P(r),
after orientation averaging, becomes a function of the variable r only. It can be
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written 12 as

P(r) 1 (r D-3 r

ADf R - , k R ' (1)

with a positive cut-off function f,. Rg is the radius of gyration, given by

R2g = 1 r 2P(r)47rr 2dr

The coefficient ADf in Eq.(1) insures proper normalization of the distance-
distribution function. For simple applications, the cut-off function f, is approx-
imated by an exponentially decreasing function, such that .

P(r) 1 DrD exp[--- D Df+ 1)1  (2)
ADf R g g

This approximation is not valid in general and a much more precise form is
fr(z) -. exp(-zf/2) as it has been shown in 12. The latter is useful for numerical
computation, but analytic calculations can often be handled only for the exponen-
tial cut-off.

2 Electromagnetic Scattering Codes

First exact results for scattering of electromagnetic field on some large objects (i.e.,
of size comparable to the wavelength) were obtained in the classical Mie's work 13

for spherical, homogeneous scatterers irradiated by monochromatic plane wave.
The solution is then given as a series of vector spherical functions which (usually)
converges. There are several natural ways to extend this result to more complicated
cases. One of them is to consider a rigid assembly of such identical balls, and to
wonder if one can express the scattered field knowing the exact response of any of
these balls. This is the T-matrix formalism which is briefly reviewed in the following
section. Another way is to consider a non-homogeneous ball, where the refractive
index depends continuously on the distance to the center, for example according to
the averaged density of the cluster. This method is not well known and is discussed
in more details below in Sec.D.

2.1 Orientation-Averaged T-Matrix Code

In principle, for the case of rigid aggregate of homogeneous spheres, the cluster T-
matrix method is the exact solution of Maxwell equations with appropriate bound-
ary conditions 14. Its basis is just the linearity of Maxwell equations and boundary
conditions. Writing the scattered electric field in terms of usual expansion

00 fl

Esca(j) = S S iEmn[ainm (.J) + b6rnn.Ml)(j)] , (3)
n=1 m=-n

with the standard notations for the spherical harmonics functions 15, the method
consists then in developing all these fields over a unique ensemble of vector spheri-
cal functions, by systematic use of the addition theorem which expresses spherical
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harmonic functions referring to the center of some grain into series of vector spher-
ical functions with the origin on a reference point. All the fields, included the
incident one, being expressed over the same basis of vectors, one can write self-
consistently that the local field on particle j is the sum of the incident field plus all
fields scattered by other particles, and obtain a set of coupled linear equations in
all the expansion coefficients (aJ,, bm,). Truncating the order of these equations
at a reasonable level of accuracy, the problem reduces to an inversion of a large ma-
trix equation. Moreover, a very efficient computational method has recently been
proposed, where orientation averaging is performed analytically 17. Since fractal
clusters are essentially non-spherical, except in a statistical meaning, this scheme
provides considerable help in the practical computation of the average scattering
coefficients.

2.2 Mean-Field Mie-Code

The T-matrix equations can be substantially simplified in a mean-field approach
where all the grains are supposed to scatter the same electromagnetic field. This
has been done previously for the dipolar scattered fields is, but this was recently
extended to the Mie scattering 19, that is, with scattered fields of the form (3).
In this case we have not to consider self-consistent equations between N scattered
fields, but just one self-consistent equation with one (mean-field) scattered field.
Inversion of a small matrix equation is needed and usually can be performed quickly
on any small computer. It is difficult to judge the correctness of the mean-field
hypothesis, but numerically it leads to one of the best, now available approximations
for self-similar aggregates of identical grains 16. Qualitatively, great inhomogeneities
of the local fields should be avoided and this means that the system is far from
any optical resonance 20. Moreover, the geometrical structure itself should be as
homogeneous as possible. This means for fractal aggregates that we have to deal
only with strictly self-similar objects, like the clusters generated by the models
discussed here (BrCCA and RCCA).

2.3 Discrete-Dipole Approximation

This method, known as DDA numerical method 21 , consists in dividing the scat-
terer into identical pieces small enough to be individually considered as electromag-
netic dipoles, but large enough in order that the number of such sub-units be not
too large. All these dipoles interact, and since the field radiated by each dipole is
analytically simple, the method is exact, as far as space discretisation is fine enough
to insure the dipolar representation be correct. Below, we used this method with
one dipole per grain. This is correct if the wavelength is much larger than the radius
of one grain, but as soon as the size parameter becomes of order unity, we should
take several dipoles per grain, but the computations become rapidly important from
both CPU time and memory points of view.
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2.4 Fractally-Coated Code

This section is about a new approximate computation of the scattered properties for
fractal clusters. Instead of taking the exact solution by the T-matrix method, then
averaging over all possible orientations, one can decide first to average the geometric
structure, yielding radially decreasing density of matter, and then to compute the
scattering properties as if it was for a ball of same spherical density. More precisely,
consider fractal distributions of matter with fractal dimension Df. Suppose that
these are fractal aggregates of balls of radius a. If they are statistically radially
symmetric, one can identify the center of the ball closest to the center of gravity as
the center of coordinates and write the average density as

p(r) = 1 if r < a (4)

p(r) = (r)D,-3 if a < r <R

p(r) = 0 if r > R

where R is a typical radius of the aggregate. The constraint on the total mass of
the aggregate gives explicitly the value of R since we must have

M(oo) = a()Dfa 47rr2dr

equal to the mass of the aggregate, namely, M = 47ra 3 N/3. This means that

R/a = (D N/3)1/D

With these results in hands one can compute the electromagnetic field scattered by
a ball of radial refractive index nav(r) given by the Maxwell-Garnett rule 15

2"(r) = n2 (1 + 2p(r)) + 2(1 - p(r))
na n 2 ( -p(r)) 2+p(r)

with n the refractive index for the grain. This comes from the multilayered sphere
recursive equations 22 which are both stable and accurate.

2.5 Numerical Comparison Between Codes

All four methods have been implemented into numerical codes for fractal aggre-
gates. Firstly we compare all of them, the T-matrix method being considered as
giving the exact results. We present in this article a small part of this task, more
systematic comparisons are in preparation 23. We have decided to show here some
comparisons for several representative values of refractive index, namely, n = 1.5
(non absorbing), n = 1.5 + i * 10-, n = 1.5 + i * 10-2 and n = 1.5 + i (strongly
absorbing). Just one size is discussed, N = 512 - for which the fractal features are
known to be well developed -, and the grain-size parameter x = ka = 27ra/A is be-
tween 10-4 and 1. For these parameters, the T-matrix as well as the DDA methods
cannot go to values of x much larger than 1. The extinction and backscattering
cross-sections are shown for the four computations in Figs. 2, and 3.
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Figure 2. Numerical comparisons between the four methods described in the text, for N = 512
RCCA clusters of fractal dimension Df = 2. The refractive index is n = 1.5 + i * 10-2, and the
grain-size parameter x varies between 10-3 and 1. Double-logarithmic scale, the cross-sections
have all been divided by N-ra2 for normalisation. Symbols are : full circles (and line) are for
T-matrix, diamonds for Mean-Field Mie, crosses for DDA, squares for fractally-coated methods,
respectively.
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Figure 3. Numerical comparisons between the four methods described in the text, for N = 512
RCCA clusters of fractal dimension Df = 2. The refractive index is n = 1.5 + i * n", with different
values of n" between 0 and 1. Note that the data for n" = 0 (i.e. for the non-absorbing index
: n = 1.5) has been shifted to n" = 10-6 to show them on the same figure. Double-logarithmic
scale, the cross-sections have all been divided by Nira2 for normalisation. Symbols are : full
circles (and line) are for T-matrix, diamonds for Mean-Field Mie, crosses for DDA, squares for
fractally-coated computations respectively.
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The results are quantitatively comparable even if the fractally-coated results
are indeed less precise, leading to slight overestimation of the cross-sections when
x becomes large. The DDA code may give wrong under-estimate values of the
backscattering cross-sections, due to lack of numerical stability, as shown in the
x = 10-1 case. These results reinforce the conclusions that the Mean-Field Mie
method is the most reliable approximation up to the largest values of x attainable
by T-matrix code with our computers.

3 Backscattering Coefficient

The backscattering coefficient needs particular comment. This coefficient is im-
portant in some applications like lidar experiments, basically because in such ex-
periments, one light beam is emitted and the backscattered light is analysed 24
This kind of experiments can be handled with far scattering sources because of
this simple geometry, and gives access to precise informations about remote aerosol
scatterers 25. Furthermore, backscattering is also phenomenologically known to be
important to distinguish between various forms of scatterers 26.

3.1 Single-Scattering Theory

If we suppose single-scattering to be the dominant feature, and the cut-off function
to be exponential, then the orientation-averaged intensity I, of the light scattered
at angle 0 by fractal aggregate of size N and fractal dimension Df, is just 9

I,,(N) = NIlca(1) I+ (N - 1)sm[(DD - l)tan-'(qý)] 1 (5)
(Df - 1)qý (1 + q2V2D1) )

with the modulus of the scattering vector, q = 2ksin(0/2), and • =
Rp 2/Df (Df + 1). This formula allows to recover properly the Guinier-regime
for qa < 1 and the fractal q-Df-law for 1/ý <K q < 1/a. Moreover, for extinction,
we are interested in q = 0 since we look at the 0 = 0 case, and so

oext(N) = N :ex.t(1) ,

as a consequence of forward coherence. More precise forms of extinction cross-
section can be found in 1.

The case is totally different for backscattering since in this case, q = 2k, and
the waves scattered by the grains do not have the same phase. More precisely

O'back(N) = NO'back(l) 1+ (N - 1)sin[(Df - 1) tan-'(2ký)] 1
(Df - 1)2k] (1 + 4]k22)(D-1)/2

as an immediate consequence of (5). In particular, in the case of clusters large
compared to the wavelength (k» > 1), the preceding formula approximates as

O'back(N) n- N'back() [1 + BDf]

with finite numerical coefficient BDf depending only on the fractal dimension of the
scatterer. This means that when ka is small enough, the ratio Uback(N)/No'bak(l)
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is essentially proportional to (ka)-Df, or equivalently

In (Obk(N) Df ln(A) for a < A < Rg. (6)(No-b.,k(1))]

When A < a, then the ratio ffback(N)/NO'back(1) is close to 1 and its loga-
rithm vanishes. For A > R., the phase difference between the grains can be
neglected and we recover the same coherence peak as for forward scattering 27

Cback(N)/No'baek(1) 2_ N independently of the wavelength. Relation (6) provides a
possible measure of the fractal dimension Df of the scatterers analysed at different
wavelengths. This is in principle a natural way to examine a fractal aggregate since

the basic property of such an object is self-similarity. We just claim that analysing

a fractal with different wavelengths correspond to investigating its structure with
different length scales, and the result (6) is an illustration of this fact. A partic-
ular case of this idea has previously been proposed 28 with application to fractal

Sierpinski gaskets

3.2 Multiple-Scattering Results

So, in principle, relation (6) should give access to the fractal dimension of the
clusters if one can measure the backscattering cross-section at different wavelengths
in between the typical size of the grains and the typical radius of the aggregates.
The result is in principle strictly valid only for the single-scattering approximation.
One can wonder then if it holds also when multiple-scattering is no more negligible.
In fact, we can qualitatively argue that for fractal dimensions Df < 2, multiple
scattering is expected to be small compared to single scattering. So, in this case,

the signature of the fractal structure should be seen anyway, even if a bit modified.
This should be checked on numerical simulations taking the multiple scattering into
account.

But first, we have to be careful about the fact that the wavelength dependence of
the refractive index of grain material is not generally cancelled by such simple pro-
cedure as taking the ratio O'back(N)/NO'back(l), when multiple scattering is present.
Focusing on the signature of fractal structure, we suppose here that correction is
done in such a way that the refractive index of the grains can be considered as con-
stant over the range of wavelengths. Usually, this can be done when the wavelength
dependence of the refractive index of the material and the typical size of the grains
are known.

Since we have shown before that the Mean-Field Mie code gives results very close
to the exact T-matrix computation inside the range of analysis, we shall discuss
the results of this method (Mean-Field Mie code) which can easily be used for very
large values of the grain-size parameter.

Fig. 4 gives the numerical results for N = 512, and the two kinds of fractal
aggregates : BrCCA with Df = 1.75 and RCCA with DJ = 2, for the refractive
index n = 1.5+i* 10-2. The single-scattering result (6) is well recovered over about
one decade in both cases. This range is the expected one since for these models and
N = 512, the values of ý/a are about 20 and 14 for BrCCA and RCCA respectively.
The left-hand plateau for the long wavelengths is the Rayleigh coherent regime
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Figure 4. Sketch of the ratio abak(N)/N
2
cbak(1) vs the grain-size parameter x for BrCCA

(diamonds, fractal dimension = 1.75) and RCCA (circles, fractal dimension = 2), calculated with
the Mean-Field Mie method. Double-logarithmic plot. The RCCA data have been divided by a
factor 10 for visual separation of the two cases. The Df-slope - derived in the single-scattering
theory -, is well recovered between the dashed lines.

and in this case we expect : Uback(N) - N 2 Orback(1). On the other side, for the
small wavelengths, one begins to see oscillating behaviour on the curves, before the
possible limiting value - 1/N. These results show clearly that the single-scattering
result (6) is very robust in these cases and dominates the leading behaviour even if
multiple scattering is taken into account.

4 Conclusions

We briefly reviewed in this work four theoretical methods allowing to compute
either exactly or with fine accuracy the optical cross-sections of fractal aggregates.
We used the corresponding numerical codes to compare their results for two sets
of typical fractal clusters of fractal dimension Df = 1.75 and Df = 2, relevant
in aerosol and colloid physics. For reasonable values of the refractive index of the
material, the Mean-Field Mie method is seen to give the most accurate and reliable
results, as compared to the exact T-matrix method, which is limited by the large
amount of computations when the grain-size parameter becomes large.

As an application, we have studied the wavelength dependence of the backscat-
tering cross-section for wavelengths between the size of the grains and the radius of
the aggregates. It has been shown that such analysis gives access to a very particu-
lar signature of the fractal structure, and could in principle be used to estimate the
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fractal dimension of the scatterers by lidar experiments, since lidar signal depends

essentially of the backscattering and the extinction cross-sections of the scattering

aerosols. This should give a new alternative to measure experimentally the fractal
dimension of fractal aggregates by electromagnetic radiation scattering.

Note : The numerical scattering codes for fractal aggregates are available upon

request from pra@ccr.jussieu.fr for the Mean-Field Mie and DDA methods, and

from botet@Ips.u-psud.fr for the T-matrix and fractally-coated methods. The basic

T-matrix code may be found at http://www.giss.nasa.gov crmim/, and original
DDA code comes from http://www.astro.princeton.edu/ drainelscattering.html.
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